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The phase diagram of the system CuV205-V204-VzOs at 923 K was established. Two new phases, 
CU,V~O~~ (0.87 5 x 5 1.73) and CU,V,~O~ (1 .O 5 x 5 1.9), were found instead of the oxygen-deficient 
p’-Cu,V20S reported earlier. Including /3’-Cu,V205, they form a homologous series of bronze phases 
CU~V~O,S~-~. These phases are closely related to b- and /?I’-LixVlnOISn-,,, found previously. Factors 
bounding the maximum M content in MxV6,,0ir,+.,,, (M = Cu, Li) are discussed. The dc conductivities 
along the b-axis of the single crystals of the new phases were measured. o 1989 Academic press, II-X. 

Introduction 

Vanadium bronzes, MXV205, crystallize 
in various types of structures depending on 
the element M and its content x. In the 
CuXVZOS system, three bronze phases are 
known, cu(0 < x IS 0.02), p’(0.26 I x 4 
0.64), and ~(0.85 I x I 1) (I). Mori et al. 
reported a phase diagram of the system 
Cu20-V204-V205 in which the p’ phase ap- 
peared as a phase CU,V~O~-~ (0 5 y I 0.2) 
with a large number of oxygen defects (2). 
The phase diagram of the corresponding 
LiV205-V204-V205 system determined by 
Takayama-Muromachi and Kato (3), how- 
ever, differs from the diagram of the 
Cu-containing system by Mori et al. 
Takayama-Muromachi and Kato found a 
series of vanadium bronzes, /3- and /3’- 
LixV6nOlSn-m (4) and concluded that earlier 
studies (5) had misidentified LiXV9022 (n = 
3, m = 1 in the above notation) and/or 

* To whom correspondence should be addressed. 

LiXVi202s (n = 2, m = 1) as the oxygen- 
deficient /3 phase Li,V@-,. The member 
with n = 1 and m = 0 corresponds to the 
well-known p- or p’-LiXV20s. Since the 
ionic radii of Cu+ and Li+ are very close to 
each other (6), their results cast doubt on 
the phase diagram reported by Mori et al. 
We reinvestigated the phase equilibrium re- 
lations in the CuV205-V204-V205 system 
at 923 K and found that there exist, instead 
of the oxygen-deficient p’ phase, two new 
bronze phases CU,V~O~~ and Cu,Vr2029. 
The dc conductivity data for these Cu- 
based bronze phases were obtained. 

Experiment 

V204 was prepared by heating an equi- 
molar mixture of V205 (99.9%) and V203 in 
a sealed silica tube at 1273 K for 3 days. 
The V203 had been obtained by reducing 
the V205 in hydrogen at 1073 K. Ct.1~0 was 
prepared by reducing CuO (99.9%) in air at 
1333 K for 1 day and then quenching it in 
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liquid nitrogen. The three compounds, 
V205, V204, and CuZO, were mixed in the 
desired ratio in an agate mortar. About 1.5 
g of the mixture was sealed in a silica tube 
and heated at 923 2 2 K for 48-72 hr, then 
cooled in air. The product was ground and 
examined by powder X-ray diffraction us- 
ing CuZ& radiation. This procedure was re- 
peated until the powder X-ray pattern did 
not change anymore. Usually, one heating 
run was enough to obtain steady state, but 
the formation of the CU,V~O~~ phase was 
somewhat sluggish and two runs of pro- 
longed heating (both 168-192 hr) were 
needed for the Cu,V90Z2-containing region 
to reach equilibrium. Single crystals of the 
newly discovered bronze phases were pre- 
pared by chemical transport methods, using 
as carriers HCl gas for CLI,V~~O~~ and Cl2 
gas for Cu,VgOZ2. Typical size of the crys- 
tals obtained was 0.6 x 0.4 x 5.0 mm. The 
dc conductivities along the b-axis of the 
single crystals of CU,V~O~~ and CU,V~~O~~ 
were measured by the standard four-probe 
method. 

Results and Discussion 

The phase diagram determined in the 
present study is shown in Fig. 1. The phase 
relations in the Cu,V20s system are identi- 
cal with the earlier results (I) except for 
minor differences. There are three bronze 
phases, (Y-, /3’-, and E-Cu,VZOS . The (Y 
phase is based on the parent oxide V20s 
with the Cu ions inserted between V205 lay- 
ers, while in the other phases, major struc- 
tural rearrangement occurs in the V205 
framework (7). The compositional range of 
the CY phase is very narrow and that in Fig. 1 
was taken from the previous report (I). The 
compositional range of the p’ phase was de- 
termined to be 0.237 5 x 5 0.686 by the 
variation of a lattice constant (p angle) with 
copper content x (see Fig. 2a). Of the four 
experimental points (Cu,VZOs , x = 0.7,0.8, 
0.9, and 1.0) covering the &-Cu,VZOS re- 
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FIG. I. Phase diagram of the CuV205-V204-VzOs 
system at 923 K (A) a-Cu,Vz05, (B) /3’-Cu,V20s, (C) 
&u,V20S, (D) CU,V~O~~, (E) Cu,V,,0z9. Circles indi- 
cate experimental points. Solid circles show the sin- 
gle-phased points. Open circles show the multiphased 
points. 

gion, the samples with x = 0.8 and 0.9 were 
single-phased, while the sample with x = 
0.7 contained the p’ phase in addition to the 
E phase and the sample with x = 1.0 was a 
mixture of the E phase, Cu3V04, and V204. 
Thus, we estimated the range of the E phase 
to be 0.75 I x 5 0.95. The range of the p’ 
phase is in good agreement with the pre- 
vious result 0.26 I x d 0.64 (I), whereas 
that of the E phase is substantially different 
from the previous one, 0.85 I x 9 1. In 
particular, we could not obtain the “stoi- 
chiometric” E phase, CuVZOs, at least at 
923 K. 

In addition to these three bronze phases, 
we found two compounds in the oxygen- 
poor region; they were CU,V~O~~ and 
c~xv12029. The Weissenberg photographs 
and powder X-ray patterns taken for them 
indicated that the C~,V9022 and the 
C~,V12O29 have the same space groups and 
almost the same lattice parameters (see Fig. 
2) as the p- (or p’-) LixV9022 (monoclinic 
with SG P2,/m) and p- (or p’-) LixV12O29 
(monoclinic with SG C2/m), respectively; 
i.e., there exists a series of copper vana- 
dium bronzes CI.I~V~~O~~~-~ (for the p’- 
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FIG. 2. Lattice parameters versus x for the systems (a) MxV205, (b) MrV9022, and (c) M,V,,029. (0) 
M = Cu, (A.) M = Li. 

Cu,VzOs, n = 1 and m = 0) corresponding 
to Li*VbnO*S”-m. Tables I-III show the 
powder X-ray patterns of representative 
compounds. Table IV shows their lattice 
parameters. The single-crystal X-ray analy- 
sis was completed for CLI,V~~O~~ (8) and is 
in progress for Cu,VgOz2. Detailed struc- 
tural parameters will be published soon. 

Mori et al. reported the phase relations of 
the Cu~O-Vz04-V20~ system determined 
at 893 K (2). In their diagram, the homoge- 
neity region of “p’-Cu,V205” covers a wide 
area due to “oxygen deficiency,” where in 

our diagram (Fig. 1) the CuxV12029 phase 
would exist. Since their experimental tem- 
perature is close to the present one, it is 
unlikely that the phase relations are so dif- 
ferent from those of the study. We suggest 
that they misidentified the CU,V~O~~ and 
Cu,Vr2029 phases as the oxygen deficient ,@ 
phase, CU,VZO~-~. 

The overall aspect of the present phase 
diagram resembles very closely that of the 
LiVz05-V204-V205 system, which seems 
to be owing to the similar ionic radii of Cu+ 
and Li+. There is, however, a notable dif- 
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TABLE I 

POWDER X-RAY PATTERN OF p’Cu,,,V,Os 

0 0 1 9.566 9.662 
2 0 0 7.242 7.291 
2 0 -1 6.797 6.840 
0 0 2 4.814 4.831 
2 0 -2 4.677 4.695 
4 0 -1 3.7842 3.7888 
4 0 0 3.6414 3.6457 
2 0 2 3.5787 3.5820 
1 1 0 3.5103 3.5153 
1 1 -1 3.3765 3.3794 
1 1 1 3.22% 3.2324 
4 0 1 3.1245 3.1275 
1 1 -2 2.9401 2.9409 
3 1 -1 2.9213 2.9230 
4 0 -3 2.8526 2.8540 
1 1 2 2.7519 2.7533 
3 1 -2 2.6999 2.7021 
2 0 3 2.6748 2.6761 
2 0 -4 2.5179 2.5189 
1 1 -3 2.45% 2.4610 
0 0 4 2.4146 2.4156 
4 0 -4 2.3467 2.3475 
1 1 3 2.2957 2.2970 
5 1 0 2.2702 2.2117 
6 0 1 2.2105 2.2117 
4 0 3 2.1289 2.1296 
5 1 -3 2.0893 2.0892 
2 0 -5 2.0162 2.0168 
6 0 2 1.9562 1.9574 
4 0 -5 1.9562 1.9553 
1 1 4 1.9294 1.9296 
8 0 -2 1.8938 1.8944 
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5 1 -4 1.8715 1.8774 <l 
7 1 -1 1.8601 1.8607 2 
8 0 0 1.8222 1.8229 1 
0 2 0 1.8102 1.8110 2 
6 0 -5 1.7815 1.7820 1 
2 0 5 1.7472 1.7480 -cl 
6 0 3 1.7171 1.7176 3 
8 0 -4 1.7093 1.7099 1 
5 1 3 1.6867 1.6873 1 
2 0 -6 1.6773 1.6771 <I 
5 1 -5 1.6672 1.6612 <I 
0 0 6 1.6105 1.6104 2 
8 0 2 1.5632 1.5638 4 
4 0 5 1.5350 1.5349 2 
4 2 -3 1.5291 1.5291 1 
9 1 -1 1.5236 1.5229 3 

10 0 -2 1.5216 1.5221 4 
6 0 4 1.5104 1.5103 ‘cl 
5 1 4 1.4964 1.4964 2 
2 0 6 1.4854 1.4853 2 
9 1 0 1.4788 1.4791 1 
5 1 -6 1.4788 1.4789 1 

10 0 0 1.4580 1.4583 <l 
10 0 -4 1.4452 1.4453 1 
4 0 -7 1.4342 1.4344 1 
4 2 -4 1.4342 1.4339 1 
8 0 -6 1.4273 1.4270 <I 
9 1 1 1.4078 1.4079 2 
6 2 1 1.4009 1.4012 1 

10 0 1 1.3842 1.3845 1 
9 1 -5 1.3587 1.3588 1 

ference; in the Li-containing system (3, 9), 
there exist two closely related but different 
phases, /3- and p’-LiXV205, p- and /I’- 
LiXV90Z2, or p- and /3’-LiXV12029, corre- 
sponding to the one-phase region of /Y- 
CuXV20S, CU,V~O~~, or CU~V~~O~~, re- 
spectively (see below). 

Figures 2a-2c show lattice parameters of 
the MXV6nOlsn-m-type bronze phases (A4 = 
Li and Cu) as functions of x. The data of 
the Li-containing phases were cited from 
the previous_ reports (3, 9). For every 
Li,Vs,OIS,-, system, there is a two-phase 

region across which the lattice parameters 
change abruptly. The Li-poor phase has 
been termed p and the Li-rich phase p’. In 
contrast, the lattice parameters of the Cu- 
containing phases change smoothly with x 
and the two-phase region is not present 
within any CU~V~~O,~~-~ systems. Compar- 
ing the Li and Cu systems, it is seen that the 
lattice parameters of every Cu system are 
closer to those of the corresponding Li-rich 
phase (p’ phase) than to those of the /3 
phase. 

p- and p’-M,V20S (A4 = Cu, Li) (7-1I) 
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TABLE II 

POWDER X-RAY PA~ERN OF CU,.,V~O~~ 

73 

0 0 1 9.799 9.893 10 
3 0 0 6.985 7.030 100 
3 0 -1 6.371 6.405 2 
0 0 2 4.929 4.946 4 
1 0 2 4.588 4.604 2 
5 0 -1 4.2076 4.2144 Cl 
2 0 2 4.1508 4.1535 <I 
3 0 2 3.6924 3.6946 4 
6 0 -1 3.5544 3.5576 1 
6 0 0 3.5113 3.5148 6 
1 1 -1 3.3926 3.3929 4 
1 1 1 3.3108 3.3164 <l 
4 0 2 3.2756 3.2783 1 
1 0 3 3.1595 3.1578 1 
6 0 1 3.1091 3.1111 56 
7 0 0 3.0110 3.0127 1 
4 1 0 2.9825 2.9827 <I 
1 1 -2 2.9424 2.9425 Cl 
5 0 -3 2.9120 2.9137 8 
3 0 3 2.7679 2.7690 1 
2 1 2 2.7270 2.7278 Cl 
4 1 -2 2.6999 2.7010 2 
8 0 0 2.6341 2.6361 1 
3 1 2 2.5818 2.5847 (1 
4 0 3 2.5631 2.5629 (1 
2 0 -4 2.5286 2.52% 1 
0 0 4 2.4725 2.4732 1 
1 1 -3 2.4638 2.4651 <I 
1 0 4 2.3973 2.3984 4 
5 0 -4 2.3618 2.3623 1 
9 0 0 2.3423 2.3432 1 
7 1 0 2.3145 2.3150 1 
2 1 3 2.2959 2.2970 <l 
9 0 1 2.1783 2.1792 18 
8 1 0 2.1303 2.1304 <l 
7 1 -3 2.0581 2.0583 <l 
2 0 -5 2.0234 2.0237 2 

10 0 1 1.9787 1.9791 <I 
9 0 2 1.9630 1.9632 4 
5 0 -5 1.9571 1.9573 3 
2 1 4 1.9421 1.9422 <l 

11 0 -2 1.9298 1.9303 2 
10 1 -1 1.8525 1.8530 1 
8 1 2 1.8457 1.8455 <l 

10 1 0 1.8217 1.8219 <I 
0 2 0 1 A086 1.8086 2 

12 0 -2 1.7784 1.7788 1 
8 0 -5 1.7723 1.7724 <l 

12 0 0 1 .I570 1.7574 1 
3 2 0 1.7516 1.7516 <I 
9 0 3 1.7439 1 .I440 1 
9 1 2 1.7251 1.7255 <l 

11 0 -4 1.6989 1.6990 1 
2 0 -6 1.6846 1.6842 <I 
8 1 3 1.6645 1.6646 <I 

13 0 -2 1.6480 1.6480 <I 
10 0 3 1.6275 1.6274 1 

1 0 6 1.6173 1.6174 1 
6 2 1 1.5635 1.5636 1 

12 0 2 1.5553 1.5556 2 
9 0 4 1.5456 1.5458 <l 

14 0 -1 1.5377 1.5384 1 
14 0 -2 1.5341 1.5342 2 
3 1 -6 1.5286 1.5285 1 
4 1 -6 1.5226 1.5221 <l 
7 0 5 1.5135 1.5136 1 

13 1 -1 1.5068 1.5070 1 
8 1 4 1.4930 1.4930 1 
6 1 -6 1.4869 1.4869 2 
4 0 6 1.4869 1.4867 2 

13 1 0 1.4799 1.4802 <I 
13 1 -3 1.4597 1.45% <I 

1 2 4 1.4442 1.4441 -Cl 
5 0 -7 1.4347 1.4344 <l 

12 0 3 1.4307 1.4305 <I 
1 0 -7 1.4307 1.4304 <l 

13 1 1 1.4242 1.4243 1 
15 0 0 1.4058 1.4059 <l 
9 2 1 1.3917 1.3917 <l 

12 1 -5 1.3681 1.3683 ‘cl 
15 0 1 1.3527 1.3527 1 
2 2 -5 1.3483 1.3485 <l 

have essentially the same V-O framework ordinated site; the two are separated from 
as the well-known P-NaXV205 (22) and have each other by b/2. In p-LiXV205 (ZO), iso- 
one kind of tunnel (denoted A in Fig. 3) structural with &NaXV205, Li+ ions occupy 
along the b-axis. Within the tunnel, there the “seven-coordinated sites” (hereafter 
are two kinds of M ion sites: one is a seven- we will call them P-type sites.). However, 
coordinated site and the other is a five-co- in the /3’-Cu,V205 (7, 1Z), Cu+ ions occupy 
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TABLE III 

POWDER X-RAY PATTERN OF CU,,,V,,O~~ 

0 0 1 9.897 9.992 27 8 0 -5 
4 0 0 6.861 6.901 82 13 1 -1 
4 0 -1 6.160 6.188 10 13 1 0 
0 0 2 4.979 4.996 14 11 1 2 
6 0 0 4.587 4.601 1 0 2 0 
2 0 2 4.449 4.463 7 10 0 -5 
4 0 2 3.7539 3.7568 13 12 0 3 
8 0 0 3.4491 3.4507 10 4 2 0 
1 1 -1 3.3983 3.4001 30 16 0 -2 
2 0 -3 3.3696 3.3702 2 14 0 -4 
I 1 I 3.3509 3.3530 4 2 0 -6 
3 1 -1 3.2507 3.2522 3 11 1 3 
4 0 -3 3.2187 3.2201 5 13 1 2 
6 0 2 3.1302 3.1312 7 2 0 6 
8 0 1 3.1022 3.1040 100 14 0 3 
5 1 0 3.0243 3.0261 2 8 2 1 
5 1 -1 2.9702 2.9736 2 16 0 2 
6 0 -3 2.9424 2.9446 57 11 1 -5 
4 0 3 2.8173 2.8191 4 18 0 -2 

10 0 0 2.7592 2.7606 2 3 1 -6 
3 1 2 2.7148 2.7155 3 5 1 -6 
5 1 -2 2.7000 2.7016 15 10 0 5 
8 0 -3 2.6277 2.6286 6 17 1 -1 
2 0 -4 2.5329 2.5343 9 11 1 4 
6 0 3 2.5040 2.5045 3 6 0 6 
0 0 4 2.4968 2.4981 2 2 2 -4 
1 1 -3 2.4669 2.4680 3 13 1 -5 
2 0 4 2.3877 2.3884 12 2 2 4 
6 0 -4 2.3687 2.36% 8 17 1 -3 
9 1 0 2.3388 2.33% 5 17 1 1 

10 0 -3 2.3266 2.3274 2 0 0 7 
3 1 3 2.2973 2.2980 3 18 0 -4 
8 0 3 2.2160 2.2167 2 8 0 -7 

12 0 I 2.1626 2.1634 32 14 0 -6 
11 1 0 2.0617 2.0621 2 12 2 1 
9 1 -3 2.0421 2.0423 2 20 0 0 
2 0 -5 2.0262 2.0270 10 15 1 -5 

12 0 2 I .9668 1.9672 9 19 1 -1 
6 0 -5 1.9575 1.9578 21 2 2 -5 

14 0 -2 1.9494 1.9501 9 7 1 6 

h k 1 d&h dc,,c(~) Ill0 

1.8716 1.8719 1 
1.8494 1.8498 4 
1.8313 1.8314 2 
I .8194 1.8192 2 
1.8086 1.8090 9 
1.7666 1.7667 2 
1.7588 1.7590 3 
1.7497 1.7499 I 
1.7240 1.7231 3 
1.6931 1.6931 6 
1.6876 I .6876 1 
1.6536 1.6536 2 
1.6439 1.6439 1 
1.6209 1.6211 4 
1.5835 1.5836 2 
1.5627 1.5629 4 
1.5519 1.5520 4 
1.5464 1.5464 3 
1.5408 1.5410 8 
1.5308 1.5308 6 
1.5194 1.5197 1 
1.5028 1.5027 4 
1.4995 1.4994 4 
1.4917 1.4919 11 
1.4876 1.4876 6 
1.4722 1.4724 1 
1.4600 1.4603 1 
1.4418 1.4421 1 
1.4382 1.4384 2 
1.4337 1.4338 4 
1.4277 1.4275 1 
1.4187 1.4182 1 
1.4058 1.4056 1 
1.3942 1.3936 1 
1.3879 I .3878 2 
1.3805 1.3803 1 
1.3733 1.3734 3 
1.3648 1.3648 <l 
1.3497 1.3497 1 
1.3452 1.3451 1 

the five-coordinated sites (@‘-type site) and p’-MXV205. Tunnel B has essentially 
rather than the P-type sites. It is believed the same site configuration in all of the 
that the Li+ position in p’-LiXV205 (10) is MxV6nOlSn-m structures and can contain at 
also of the /3’-type. In Zt4XV9022 and most one M ion per unit cell. It is natural to 
MXV1~029 (8, 13, 24, there are two types of expect that two phases, p- and j3’-LiXV9022 
tunnels along the b-axis, denoted by A and (or /I- and /3’-LiXV12029), are distinguished 
B in Fig. 3. Tunnel A is similar to that of p- by different Li positions in tunnel A. In- 
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TABLE IV 

LATTICE PARAMETERS OF CuxVtiOISn-,,, 

Compound 4) b(A) 4) 80 

pI-cw.4v205 15.223(1) 3.6221(4) 10.087(l) 106.6?(l) 

C~L3V9022 21.577(l) 3.6176(4) 10.121(1) 102.20(1) 

Cu1.5V12% 28.0l0(2) 3.6177(3) 10.139(l) 99.73(l) 

deed, it was confirmed that the Li position 
in tunnel A of P-LixV90tZ (13) or /3- 
LixVi2029 (14) is of the P-type while the Cu 
position in tunnel A of CU,V~~O~~ (8) is of 
the PI-type. However, the Li site in tunnel 
A of /3’-Li+V9022 (and p’-LixV12029) (13, 14) 

a 

FIG. 3. Projections of the MXV6,0,5,-, (M = Cu, Li) 
structures onto the (010) plane. Large circles represent 
oxygen atoms, small circles vanadium atoms. Solid 
circles indicate possible sites for V4+. 

could not be determined by X-ray diffrac- 
tion methods, suggesting that the Li ions 
were distributed somewhat randomly. 

Since the two nearest P-type sites are too 
close to be occupied simultaneously, tunnel 
A can contain at most one M ion per unit 
cell in /3-M,V205 (i.e., maximum x is 4). On 
the contrary, tunnel A of p’-M,V;?O5 can 
contain two M ions per unit cell (i.e., maxi- 
mum x is J). If the same consideration is 
applied to the other members of the present 
series, the maximum x values may be calcu- 
lated (including M ions in tunnel B) to be 
1.5 for p-MxV9022, 2.5 for /Y-MxV9022, 2.0 
for /3-M,V,2029, and 3.0 for /3’-MxV12029. 

In MxV6nOlSn-mr two-thirds of the vana- 
dium atoms are coordinated by six oxygen 
atoms. The six-coordinated vanadium site 
can be divided equally into two groups in p- 
and /3’-M,V20s. One of them makes a zig- 
zag chain by itself along the b-axis and is 
termed the V(1) site (indicated by solid cir- 
cles in Fig. 3). Goodenough (15) suggested 
that V4+ ions in the p- (or /3’-)MxV205 are 
concentrated at the V(1) sites. His sugges- 
tion was confirmed experimentally for p- 
Na,V20S (16, 17). On the other hand, Cu 
atoms are known by ESR study to be mono- 
valent in /3’-Cu,V205 (18). That is to say, x 
also represents the number of V4+ ions per 
unit formula in /3’-Cu,V205. If we assume 
that only V ions at the V(1) site can be re- 
duced to V4+, the maximum x becomes 
f which is equal to the number of V(1) 
sites per unit formula. In MxV9022 and 
MxV12029, half of the six-coordinated vana- 
dium atoms are at the V(l)-like sites (indi- 
cated by solid circles in Fig. 3), and there 
are three and four of them per unit formula, 
respectively. It seems reasonable to as- 
sume that V ions at these sites are prefera- 
bly reduced to V4+ as in /3- and /3’-MxV205. 
Here we assume that the Cu atoms in every 
CU~V~,,O~+~ are monovalent rather than 
divalent. Since both Cu,VgOZ2 and Cu, 
V12O29 exist in the reduced region more 
than /3’-CuxV20S does, the above assump- 
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TABLE V 

RANGE 0~ x Fou THE SYSTEM h4zVQOISn-m 
(M = Cu, Li) 

Compound 
Range of x 

(ohs) 

Maximum x (talc) 

M site V4+ site 

p’-cu,v20~ 0.237-0.686 f s 
cuxv90** 0.87-1.73 2.5 2.0 
C~xVIZO29 1.0-1.9 3.0 2.0 
/3’-LiXV20s 0.44-0.49” 2 f 
p’-Li,V90z2 1.65-I .85b 2:5 2.0 
/3’-LiXV,,029 2.05-2.15b 3.0 2.0 
p-LiXV205 0.22-0.37” f 3 
P-LLVp022 0.90-1.356 1.5 2.0 
P-LixV12029 1.05-1.806 2.0 2.0 

0 From Ref. (9). 
b From Ref. (3). 

tion seems reasonable. Taking into account 
the intrinsic V4+ ions included in the hypo- 
thetical mother oxides “V9022” and “V12 
029,” the upper limit of x bounded by the 
number of the available “V4+ sites” be- 
comes 2.0 for both MXV9022 and MXV12029. 

In Table V, we compare the experimental 
values of maximum x with the calculated 
values based on the numbers of possible 
“M sites” and “V4+ sites” for various 
MxVs,Olsn-m-type compounds. Table V in- 
dicates that the maximum x determined ex- 
perimentally is close to the smaller one of 
two calculated values. For instance, in 
every /3-Li,Vs,OIS,-,, the maximum x 
based on the V4+ site is larger than that 
based on the Li site and the experimental 
value is close to the latter. On the contrary, 
in Cu,V90Z2 or CU~V~~O~~, the number of 
possible V4+ sites is less than that of the Cu 
sites and the maximum Cu content seems to 
be restricted by the former. 

In the system MXV205 with M = Na+ 
(19), K+ (20), Ag+ (21), and Pb*+ (22), 
which are larger than Cu+ and Li+, the /3- 
type phase appears while the PI-type does 
not. For Li+, both p- and P’-type phases 

exist, and for Cu+, only the /3’-type phase is 
stable. These facts suggest that larger M 
ions prefer the P-type structure while 
smaller M ions prefer the PI-type. How- 
ever, the size of the M ions cannot explain 
why in the Cu-containing system only the 
/3’-type phase appears, contrary to the case 
of the Li-containing system and despite the 
close ionic radii of Li+ and Cu+ (6). One 
possible explanation is a unique site prefer- 
ence of the Cu+ ion; i.e., it prefers a linear 
two-coordinated site. In the /Y-type struc- 
ture, the M ion is coordinated linearly by 
two close oxygen atoms with distances ca. 
1.8 A and by three more distant oxygen at- 
oms with distances ca. 2.4 %, (8, II). The 
former value is close to the ideal distance, 
1.86 A, between two-coordinated Cu+ and 
six-coordinated 02- (6). The /Y-type site 
can, in a sense, be considered a linear two- 
coordinated site. On the other hand, the /3- 
type site is far from the linear two-coordi- 
nated site. We suggest that is why only the 
p’ phase appears in the Cu,V6,0,+, . 

Figure 4 indicates the dc conductivities 
along the b-axis of single crystals for some 
CuxV6nOlSn-m compounds. All samples ex- 
amined in the present study show semicon- 

x)0/T Ii? 

FIG. 4. The dc conductivity along the b-axis of the 
single crystal as a function of reciprocal temperature. 
(1) cb3v12029, (2) Ck5VI2029r (3) C~L1V2029, (4) 
C~L6V9022~ 
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ducting behavior, and the conductivity 
tends to increase with increasing x for 
CU,V~~O~~. Mori et al. obtained single crys- 
tals of the Cu-containing bronze phase(s) by 
slow cooling of melt phases within the 
CuV205-V205-V204 system and found that 
some of them retained metallic conductiv- 
ity down to 1.4 K (2). Their results might 
suggest that there is (are) some other 
bronze phase(s) besides Cu,VgO12 and 
Cu,Vr~0~~ at higher temperatures. Further 
study is needed to clarify this point. 

As seen in Fig. 4, the conductivity of 
CU~,~V~~O~~ or CU~.~V~O~~ changes some- 
what anomalously at around 140 K (l/T = 
0.007). The anomaly disappears in the Cu- 
poor compounds, CLI,.~V,~O~~ and Cur., 
V12029. Kanai et al. found satellite reflec- 
tions at low temperatures in X-ray diffrac- 
tion patterns of &N%.jjV205, LixV205 (x = 
0.36,0.4,0.525,0.55), and /I’-Cu,VZ05 (x = 
0.33, 0.4), which indicate the structural 
phase transition (23, 24). They tried to ex- 
plain the superlattice reflections by an or- 
dering of V4+-V4+ pairs in the V(l)-V( 1) 
zigzag chain. Their observation suggests 
that the anomaly in Fig. 4 may be associ- 
ated with some structural phase transition. 
Low-temperature X-ray diffraction mea- 
surement is advisable for more detailed dis- 
cussion. 
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